Autonomous Vehicles
Powering Autonomous Vehicles with High-quality Training Data
Highly accurate AI training data for autonomous vehicles that are error-free, human-labeled, and cost-effective
Featured Clients
Empowering teams to build world-leading AI products.
There’s an increasing demand for automotive datasets to train Machine Learning models, & AI plays a critical role by processing massive volumes of data that are far beyond our control.
Cars & automobiles in general play a crucial role in our daily lives and most people would not deny the fact that driverless cars are the future that is set to revolutionize how we commute.
According to Goldman Sachs, the next 10 years are crucial for the auto industry as it will undergo a major transformation: the cars themselves, the companies that build them, and the customers – all will look significantly different than what it was before.
Industry:
With $4.5 billion dollars in investment in 2019 AVs have the potential to revolutionize the automobile industry, improve safety, reduce congestion, energy consumption, & pollution.
Industry:
As per a recent report by IHS Markit, it is forecasted that roughly 33 million AVs will hit the road by 2040 contributing to 26 percent of new car sales.
According to a recent report by Allied Market Research, the global autonomous vehicle market is projected to reach $556.67 billion by 2026, registering a CAGR of 39.47% from 2019 to 2026.
A healthy amount of automotive expertise
Empowering emerging technologies to ride the next wave of Connected Vehicles. Shaip is a leading AI Data Platform, providing high-quality data collection and annotation that powers ML & AI applications across the automotive industry.
Data Collection Services
Image Data Collection for Automotive
We offer large volumes of image datasets (person, vehicle, traffic signs, road lanes) to train autonomous vehicles in a variety of scenarios and situations. Our experts can collect relevant image datasets as per your project requirements.
Video Data Collection for Automotive
Collect actionable training video datasets like vehicular movement, traffic signals, pedestrians, etc. to train autonomous vehicles ML models. Each dataset is tailored specifically to meet your specific use case.
Data Annotation Services
We have one of the most advanced image/video annotation tools in the
market that makes image labeling precise and super-functional for
complex use cases such as autonomous driving where quality is of utmost importance. Images & Videos are categorized frame by frame into objects such as pedestrians, vehicles, roads, lamp posts, traffic signs, etc. to build high-quality training data.
Data Annotation Techniques for Self Driving Cars
We help you with diverse labeling techniques after carefully studying your automotive project scope. We have a dedicated workforce trained for such complex annotation, QA teams that ensure 95%+ tagging accuracy levels, and tools to automate quality checks. Depending on your machine learning project, we would work on one or a combination of these image annotation techniques:
LIDAR
We can label images or videos with 360-degree visibility, captured by high-resolution cameras, to build high-quality, ground truth datasets that power autonomous vehicles algorithm.
BOUNDING BOXES
Our experts use the box annotation technique to map objects in a given image/video to build datasets thereby enabling ML models to identify & localize objects.
POLYGON ANNOTATION
In this technique, annotators plot points on object's (like Edge of Road, Broken Lane, End of Lane) exact edges to be annotated, regardless of their shape
SEMANTIC SEGMENTATION
In this technique, every pixel in an image/video is annotated with information & separated into different segments you need your cv algorithm to recognize
OBJECT TRACKING
Auto-detect instances of semantic objects of a certain class in digital images and videos, use cases could include face detection and pedestrian detection.
Use Cases
Driver Monitoring System
Build highly accurate driver monitoring system by annotating facial landmarks such as eyes, head, mouth, etc. with accuracy & relevant metadata for blink detection and gaze estimation.
Pedestrian Tracking System
Annotate pedestrians in various images with 2D bounding boxes, to build high-quality training data for pedestrian tracking
Automated Driver Assistance System
Semantic Segmentation of images/videos frame by frame which includes objects such as pedestrians, vehicles – (cars, bicycles, buses), roads, lamp posts for building high-quality training data for AI-based autonomous vehicle systems.
Object Detection
Annotate hrs of images/videos frames of urban and street environments including cars, pedestrians, lamp posts, etc. to facilitate object detection to build high-quality training data for developing CV models for autonomous vehicle.
Driver Drowsiness / Fatigue Detection
Reduce road accidents caused by drivers falling asleep by gathering vital driver information from facial landmarks such as drowsiness, eye gaze, distraction, emotion, & more. These in-cabin images are accurately annotated and used for training ML models.
In-cabin Voice Assistant
Enhance Voice recognition in car or car's voice assistant by enabling drivers to make phone calls, control music, place orders, book services, schedule appointments & more. We offer vernacular datasets in 50+ languages to train your Car Voice Assistant.
Why Shaip?
Managed workforce for complete control, reliability & productivity
A powerful platform that supports different types of annotations
Minimum 95% accuracy ensured for superior quality
Global projects across 60+ countries
Enterprise-grade SLAs
Best-in-class real-life driving data sets
Autonomous Driving Datasets
Car Interior Image Dataset
Annotated images (along with metadata) of different car interiors from multiple brands
- Use Case: Car Interior Image Recognition
- Format: Images
- Annotation: Segmentation
Outdoor Image Dataset
Images of outdoor environments of street-level in urban areas or on highways with frequent traffic
- Use Case: Image Anonymization Solution
- Format: Images
- Annotation: Yes
Car Driver in focus Image Dataset
Images of driver’s face with car setup in different poses and variations covering unique participants from multiple ethnicities
- Use Case: In-car ADAS model
- Format: Images
- Annotation: No
Vehicle License Plate Dataset
Images of Vehicle License Plates from different angles
- Use Case: Object Detection
- Format: Images
- Annotation: No
Our Capability
People
Dedicated and trained teams:
- 30,000+ collaborators for Data Creation, Labeling & QA
- Credentialed Project Management Team
- Experienced Product Development Team
- Talent Pool Sourcing & Onboarding Team
Process
Highest process efficiency is assured with:
- Robust 6 Sigma Stage-Gate Process
- A dedicated team of 6 Sigma black belts – Key process owners & Quality compliance
- Continuous Improvement & Feedback Loop
Platform
The patented platform offers benefits:
- Web-based end-to-end platform
- Impeccable Quality
- Faster TAT
- Seamless Delivery
People
Dedicated and trained teams:
- 30,000+ collaborators for Data Creation, Labeling & QA
- Credentialed Project Management Team
- Experienced Product Development Team
- Talent Pool Sourcing & Onboarding Team
Process
Highest process efficiency is assured with:
- Robust 6 Sigma Stage-Gate Process
- A dedicated team of 6 Sigma black belts – Key process owners & Quality compliance
- Continuous Improvement & Feedback Loop
Platform
The patented platform offers benefits:
- Web-based end-to-end platform
- Impeccable Quality
- Faster TAT
- Seamless Delivery
Looking for a FREE consultation? Let’s connect!